Package: spBPS 0.0-4
spBPS: Bayesian Predictive Stacking for Scalable Geospatial Transfer Learning
Provides functions for Bayesian Predictive Stacking within the Bayesian transfer learning framework for geospatial artificial systems, as introduced in "Bayesian Transfer Learning for Artificially Intelligent Geospatial Systems: A Predictive Stacking Approach" (Presicce and Banerjee, 2024) <doi:10.48550/arXiv.2410.09504>. This methodology enables efficient Bayesian geostatistical modeling, utilizing predictive stacking to improve inference across spatial datasets. The core functions leverage 'C++' for high-performance computation, making the framework well-suited for large-scale spatial data analysis in parallel and distributed computing environments. Designed for scalability, it allows seamless application in computationally demanding scenarios.
Authors:
spBPS_0.0-4.tar.gz
spBPS_0.0-4.zip(r-4.5)spBPS_0.0-4.zip(r-4.4)spBPS_0.0-4.zip(r-4.3)
spBPS_0.0-4.tgz(r-4.4-x86_64)spBPS_0.0-4.tgz(r-4.4-arm64)spBPS_0.0-4.tgz(r-4.3-x86_64)spBPS_0.0-4.tgz(r-4.3-arm64)
spBPS_0.0-4.tar.gz(r-4.5-noble)spBPS_0.0-4.tar.gz(r-4.4-noble)
spBPS_0.0-4.tgz(r-4.4-emscripten)spBPS_0.0-4.tgz(r-4.3-emscripten)
spBPS.pdf |spBPS.html✨
spBPS/json (API)
# Install 'spBPS' in R: |
install.packages('spBPS', repos = c('https://lucapresicce.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/lucapresicce/spbps/issues
Last updated 30 days agofrom:389cd729ed. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 27 2024 |
R-4.5-win-x86_64 | NOTE | Oct 27 2024 |
R-4.5-linux-x86_64 | NOTE | Oct 27 2024 |
R-4.4-win-x86_64 | NOTE | Oct 27 2024 |
R-4.4-mac-x86_64 | NOTE | Oct 27 2024 |
R-4.4-mac-aarch64 | NOTE | Oct 27 2024 |
R-4.3-win-x86_64 | NOTE | Oct 27 2024 |
R-4.3-mac-x86_64 | NOTE | Oct 27 2024 |
R-4.3-mac-aarch64 | NOTE | Oct 27 2024 |
Exports:arma_distbayesMvLMconjugateBPS_combineBPS_postBPS_post_MvTBPS_predBPS_pred_MvTBPS_PseudoBMABPS_weightsBPS_weights_MvTconv_optexpand_grid_cppforceSymmetry_cpppred_bayesMvLMconjugatesubset_data
Dependencies:bitbit64clarabelCVXRECOSolveRgmplatticeMatrixmniwosqpR6RcppRcppArmadilloRcppEigenRmpfrscs